Ongoing projects

ESA CCI+ vegetation parameters

Terrestrial vegetation plays a major role in the climate system through primary productivity by photosynthesis and respiration, recycling of precipitation, and soil formation. Two essential climate variables (ECVs) that describe the state of the vegetation are the Leaf Area Index (LAI) and fraction of incident surface solar radiation in the photosynthetically active region (0.4-0.7 μm) absorbed by vegetation (FAPAR). Consistent, global time series of LAI and FAPAR can provide insight into the dynamic role of vegetation in the Earth's climate.

FastOpt provides long term data sets of FAPAR and LAI including uncertainties.

Copernicus Climate Change Service

The Copernicus Climate Change Service (C3S) is still in the development phase and will combine observations of the climate system with the latest science to develop authoritative, quality-assured information about the past, current and future states of the climate in Europe and worldwide.

FastOpt will provide long term data sets of FAPAR and LAI.

Closed projects


Fidelity and Uncertainty in Climate data records from Earth Observation

This EU Horizon 2020 project will set new standards of accuracy and rigour in the generation of Fundamental Climate Data Records (FCDRs) and thematic Climate Data Records (CDRs), with defensible uncertainty and stability information.


Quality Assurence for Essential Climate Variables

This EU/FP7 research project aiming at showing how trustable assessments of satellite data quality can facilitate users in judging fitness-for-purpose of the ECV Climate Data Record and providing quality assured long-term Climate Data Records of several ECVs relevant for policy and climate change assessments. QA4ECV is paving the way of the future Copernicus Climate service.


Mittelfristige Klimaprognosen, PastLand

This is a research project of the Bundesministerium fuer Bildung und Forschung. In the Module A we are part of PastLand.


Arctic climate change Economy and Society

ACCESS is an European Project supported within the Ocean of Tomorrow call of the European Commission Seventh Framework Programme. Its main objective is to assess climatic change impacts on marine transportation (including tourism), fisheries, marine mammals and the extraction of oil and gas in the Arctic Ocean. ACCESS is also focusing on Arctic governance and strategic policy options.


OPTImisation environment for joint retrieval of multi-sensor RADiances

This is an ESA funded project to improve land surface data assimlilation of Earth Observations.


Developing Arctic Modeling and Observing Capabilities for Long-term Environmental Studies

This EC/FP6 research project is an integrated ice-atmosphere-ocean monitoring and forecasting system designed for observing, understanding and quantifying climate changes in the Arctic. DAMOCLES is specifically concerned with the potential for a significantly reduced sea ice cover, and the impacts this might have on the environment and on human activities, both regionally and globally.


This EC/FP6 project is an European Commision FP6 research project with a global perspective. It has the ultimate aim to lay the foundations for an operational Global Carbon Observing and Analysis System in support to both science and policy.


This is an European Commision FP6 research project.


A generic land data assimilation scheme will be developed which will have manifold benefits for the EO data exploitation and thus supports the expansion of EO user communities.


The carbon cycle is central to the Earth system, being inextricably coupled with climate, the water cycle, nutrient cycles and the production of biomass by photosynthesis on land and in the oceans. CarbonFlux will contribute to the efforts of the Global Carbon Project (GCP) by exploring and quantifying the incremental value of Earth observation products of the biosphere, hydrosphere and atmosphere on the quality of global scale biophysical and biogeochemical models through multiple constraint assimilation studies. Particular emphasize shall be put on a better understanding of the links and feedbacks of the carbon and hydrologic cycles. The Earth observation products to be considered shall be fAPAr or LAI, soil moisture and total column CO2.


The aim of the ESA SMOS-NEE project is the development of a Level 4 Net Ecosystem Exchange (NEE) product based on the assimilation of Level 3 Soil Moisture and Ocean Salinity (SMOS) soil moisture into the Carbon Cycle Data Assimilation System (CCDAS).


Eisvorhersage und Eis-Routen-Optimierung

The economic and safe running of the northern sea routes as well as the transport of raw materials and the supply of Arctic ports with goods during months with light ice conditions requires a reliable and detailed spatial as well as temporally prediction of ice to optimize route guidance.


Infrastructure for Measurements of the European Carbon Cycle

IMECC is an Integrated Infrastructure Initiative (I³) project. under the Sixth Framework Programme of the European Commission. The IMECC project aims to build the infrastructure for a coordinated, calibrated and accessible dataset for characterizing the carbon balance of Europe.


Remote Sensing Input for regional to global CO2 flux modelling

The key objective of this project is the use of Earth Observations in a state-of-the-art Carbon Cycle Data Assimilation System (CCDAS), in order to constrain the quantitative formulation of the processes regulating the terrestrial uptake of carbon.


Advanced Space Carbon and climate Observation of Planet Earth

The aim of this project is quantifying the benefit of A-scope data for reducing uncertainties in current and future terrestrial carbon uptake.


Water Cycle Observation Multi-mission Strategy

The aim of the WACMOS project is to develop and validate novel and improved multi-mission based products to enhance currently available global water datasets maximizing the use of ESA data.

The WACMOS-ET project aims to advance the development of land evaporation estimates at global and regional scales. Its main objective is the derivation, validation and inter-comparison of a group of existing evaporation retrieval algorithms driven by a common forcing data set.


Thermohaline Overturning – at Risk?

THOR will establish an operational system that will monitor and forecast the development of the North Atlantic THC on decadal time scales, and access its stability, and the risk of a breakdown in a changing climate. Together with pre-existing data sets, ongoing observations within the project will allow precise quantitative monitoring of the Atlantic THC and its sources. For the first time, this will allow an assessment of the strength of the Atlantic THC and of its sources in a consistent manner, and it will provide early identification of any systematic changes in the THC that might occur.


Aerodynamic simulation and optimization in aircraft design

Aerodynamische Simulation und Optimierung in der Flugzeugentwicklung

Das Projetes soll das Potenzial der numerischen Simulation und Optimierung für die aerodynamische und multidisziplinäre Entwicklung von Flugzeugen umfassender erschließen und industriell nutzbar machen.

Copyright © FastOpt - all rights reserved | Privacy Policy | Impressum